9. (a) Derive Fresnel's equations for reflection and refraction of electromagnetic waves of a plane boundary separating two media.

Or

- (b) Obtain the electric and magnetic, fields from an oscillating electric dipole and calculate the total power radiated.
- 10. (a) Write a note on:
 - (i) Magnetic Reynold's number
 - (ii) Bennett's relation.

Or

(b) Deduce an expression for Debye length of plasma existance and discuss in detail the instability of plasma column.

S.No. 181

12PPH05

(For the candidates admitted from 2012-2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Second Semester

Physics

ELECTROMAGNETIC THEORY

Time: Three hours

Maximum: 75 marks

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions.

- 1. (a) (i) State Coulomb's law of force between any two point charges, and indicate the units of the quantities in the force equation.
 - (ii) Find the force of interaction between two charges spaced 10 cm apart in a vacum the two charges are 4×10^{-8} and 6×10^{-5} C.

Or

(b) Determine the field at a distance 'r' from an infinite line charge of strength $'\lambda'$.

2. (a) State and explain Biot-Savart's law relating the magnetic field produced at a point due to the current in a small elemental wire.

Or

- (b) Write short note on "Magnetic circuits".
- 3. (a) Write down the differential and integral form of Maxwell's equation.

Or

- (b) Derive an expression for magnetic scalar potential.
- 4. (a) Obtain the electromagnetic wave equations for E and B in free space.

Or

- (b) Explain the following terms:
 - (i) Skin depth
 - (ii) Poynting vector
- 5. (a) Define plasma and explain its occurance in nature.

Or

(b) Write a note on "Magnetic pumping".

PART B - (5 × 10 = 50 marks)

Answer ALL questions.

6. (a) State and explain Gauss law. Derive the equation for potential at a point inside a solid sphere having uniform charge density.

Or

- (b) Deduce Clausis-Mossotti equation for dielectrics.
- 7. (a) Explain in detail the boundary condition in magnetic field for both normal and tangential components.

Or

- (b) Find the magnetic field intensity with in a magnetic material where
 - (i) M = 150 A/m and $\mu = 1.5 \times 10^{-5} H/m$.
 - (ii) $B = 300 \mu T$ and $\chi_m = 15$.
- 8. (a) (i) Compare the field theory with circuit theory.
 - (ii) What are gauge transformation? using Lorentz gauge condition, derive the relation $\Box^2 A = -\mu_0 J$.

Or

(b) State and prove Poynting theorem.