9. (a) Establish the thermodynamic equivalence of the microcanonical, the canonical and the grand canonical ensembles.

Or

- (b) Obtain the entropy of the ideal gas on the basis of grand canonical ensemble and hence derive the other thermodynamic relations.
- 10. (a) Derive an expression for Fermi-Dirac distribution law. How it differs from MB and BE distribution laws?

Or

(b) What is meant by Bose-Einstein gas? Also explain Bose-Einstein condensation.

S.No. 177

12PPH01

(For the candidates admitted from 2012-2013 onwards)
M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

First Semester

Physics

CLASSICAL AND STATISTICAL MECHANICS

Time: Three hours

Maximum: 75 marks

PART A $-(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

(a) What is meant by constraint motion?
 Distinguish between holonomic and non-holonomic constraints with suitable example.

Or

(b) State and explain the Hamilton's principle and derive Lagrange's equation of motion for a conservative system from this principle.

2. (a) Show that the transformation:

 $Q = \sqrt{2q} \ e^{\alpha} \cos p$ is a canonical transformation $P = \sqrt{2q} \ e^{-\alpha} \sin p$

Or

- (b) What are action angle variables? Explain how they can be used to obtain the frequencies of periodic motion.
- 3. (a) Enunciate the principles of special theory of relativity and derive Lorentz transformation equations.

Or

- (b) Discuss the theory of a spinning symmetrical top under gravity.
- 4. (a) Explain the thermodynamic potentials and their dependence on the number of particles in the system.

Or

- (b) What is Gibbs paradox? How is it resolved?
- 5. (a) Obtain the equation of state of a Fermi gas at finite time.

Or

(b) Derive an expression for energy radiation density of a black body and hence explain the energy spectrum.

PART B - $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

6. (a) Find the Lagrange's equation of motion of an electrical circuit containing an inductance L and capacitance C. The capacitor is charged to Q coulombs and current flowing in the circuit is I amperes.

Or

- (b) State and prove the principle of least action.
- 7. (a) Give an account of Hamilton Jacobi theory and illustrate it by applying to the problem of simple harmonic oscillator.

Or

- (b) Explain the infinitesimal contact transformation. Discuss the relation between infinitesimal contact transformation and poisson's bracket.
- 8. (a) What are small oscillations? Describe the small oscillations of the CO_2 molecule and obtain the vibrational frequencies of their modes.

Or

3

(b) Obtain an expression for the relativistic kinetic energy and hence find the mass energy relation.