- 17. Prove that A graph G with $v \ge 3$ is 2-connected if and only if any vertices of G are connected by at least two internally-disjoint paths.
- 18. Prove that every 3-regular graph without cut edges has a perfect matching.
- 19. State and prove Vizing's theorem.
- 20. State and prove Brooks theorem.

S.No. 246

12PMA14

(For the candidates admitted from 2012 – 2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Fourth Semester

Mathematics

GRAPH THEORY

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define simple graph.
- 2. Define bipartite graph.
- 3. Define tree.
- 4. Explain cut vertex.
- 5. Define Eulerian graph.
- 6. Define matching.
- 7. Explain edge chromatic number.

- 8. Define clique.
- 9. Define vertex colouring.
- 10. Explain Hajo's conjecture.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) Prove that $\sum_{u \in V} d(v) = 2 \in$.

Or

- (b) Explain Dijkstra's algorithm.
- 12. (a) Prove that a connected graph is a tree if and only if every edge is a cut edge.

Or

- (b) If e is a link of G then prove that $\tau(G) = \tau(G e) + \tau(G \cdot e)$.
- 13. (a) If G is hamiltonian then prove that for every non empty proper subset S of V, $w(G-S) \le |S|$.

Or

(b) If G is a K-regular bipartite graph with K > 0, then G has a prefect matching.

14. (a) State and prove Ramsey's theorem.

Or

- (b) Let G be a connected graph that is not an odd cycle. Then prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree atleast two.
- 15. (a) Prove that every critical path is a block.

Or

(b) If G is simple, then prove that $\pi_k(G)=\pi_k(G-e)-\pi_k(G.e)$ for any edge e of G.

SECTION C — $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

- 16. Explain:
 - (a) incident matrix
 - (b) adjacency matrix
 - (c) path
 - (d) connected graph
 - (e) cycle.