- 17. State and prove Lapunov inequality.
- 18. State and prove Levy theorem.
- 19. Obtain mean and variance of Polya distribution.
- 20. Derive the Kolmogorov inequality.

S.No. 245

12PMA13

(For the candidates admitted from 2012–2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Fourth Semester

Mathematics

PROBABILITY THEORY

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define distribution function.
- 2. Define impossible event.
- 3. State Tchebyshev inequality.
- 4. Define co-efficient of skewness.
- 5. Define semi-invariants.
- 6. Define probability generating function.
- 7. Define Polya distribution.

- 8. Define Uniform distribution.
- 9. State Borel-cantelli lemma.
- 10. State Levy-Cramer theorem.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) If $\{A_n\} n = 1,2,3...$ be a non-decreasing sequence of events and let A be their alternative then prove that $P(A) = \lim_{n \to \infty} P(A_n)$.

Or

- (b) Obtain the distribution function for $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ \frac{x}{2} & \text{for } 0 \le x \le 1. \\ 0 & \text{for } x > 1 \end{cases}$
- 12. (a) A random variable X is of the continuous type with the density function $f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \text{ then find the value of (i)}$ E(x) and $E(x^2)$

Or

(b) Prove that the coefficient correlation satisfies the inequality $-1 \le \rho \le 1$.

13. (a) Find the probability generating function of Binomial distribution.

Or

- (b) (i) Show that $\phi(0) = 1$
 - (ii) Prove that $\phi(\overline{t}) = -\phi(t)$
- 14. (a) Derive the Poisson distribution from the binomial distribution.

Or

- (b) The random variable Y has the beta distribution with p = q = 2. Write its density function. What is the probability where Y is not greater than 0.2.
- 15. (a) State and prove Bernoulli's law of large number.

Or

(b) State and prove De-Moivre Laplace theorem.

SECTION·C — $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

16. Consider the random variable X with the density

function $f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$ and Y with density

function $f(y) = \frac{1}{\sqrt{2\pi}}e^{\frac{-y^2}{2}}$ then find the density

function of Z = X + Y where X and Y are independent.

3

S.No. 245