- 18. State and prove Intermediate value theorem.
- 19. State and prove the uniform continuity theorem.
- 20. State and prove the Urysohn lemma.

S.No. 239

12PMA09

(For the candidates admitted from 2012 - 2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Third Semester

Mathematics

TOPOLOGY

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define discrete topology.
- 2. Define basis for a topology.
- 3. Define metric space.
- 4. Define uniform metric.
- 5. Define linear continuum.
- 6. Define the Cartesian product
- 7. State the tube lemma.

- 8. Define limit point compact.
- 9. Define Hausdorff space.
- 10. Define completely regular.

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

- 11. (a) Let X be a topological space. Then prove that the following conditions hold:
 - (i) ϕ and X are closed
 - (ii) Arbitrary intersections of closed sets are closed.

Or

- (b) Show that every finite point set in a Hausdorff space is closed.
- 12. (a) Show that the box topology in the product space $\prod X_{\alpha}$ is finer than the product topology.

Or

- (b) State and prove the Pasting lemma.
- 13. (a) If A is a connected subset of X, then prove that any set B such that $A \subset B \subset \overline{A}$ is also connected.

Or

(b) Prove that a spaces *X* is connected if and only if *X* and the empty set are the only both closed and open sets.

14. (a) Show that every closed subset of a compact space is compact.

Or

- (b) State and prove Extreme value theorem.
- 15. (a) Show that the product of two Lindelof space need not be Lindelof.

Or

(b) Show that every compact Hausdorif space is normal.

PART C — $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

16. If X and Y are two topological spaces and Π_1 and Π_2 are the projection of $X \times Y$ onto X and Y respectively, then prove that the collection

$$S = \left\{ \Pi_1^{-1}(U)/U \text{is open in} X \right\} \cup \\ \left\{ \Pi_1^{-1}(V)/V \text{ is open in } Y \right\}$$

is a sub basis for a product topology.

- 17. Let X and Y be topological spaces. Let $f: X \times Y$ then show that the following are equivalent
 - (a) f is continuous
 - (b) For every subset A of X.
 - (c) For every closed set in Y, then the set $f^{-1}(B)$ is closed in X.