Answer any THREE questions.

- 16. Let p_k denote the k^{th} prime number, then if s>1 we have $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}=\prod_{k=1}^{\infty}\frac{1}{1-p_k^{-s}}$. Then show that the product converges absolutely.
- 17. Let Ω be the set of all invertible linear operator on \mathbb{R}^n , the show that
 - (a) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$ and $||B A|| \cdot ||A^{-1}|| < 1$, then $B \in \Omega$.
 - (b) Ω is an open subset of $L(\mathbb{R}^n)$ and the mapping $A \to A^{-1}$ is continuous on Ω .
- 18. If [A] and [B] are $n \times n$ matrices then prove that $\det([B][A]) = \det[B] \det[A]$.
- 19. Suppose F is a C' mapping of an open set $E \subset R^n$ into \mathbb{R}^n , $0 \in E$, F(0) = 0 and F'(0) is invertible then prove that there is a neighborhood of 0 in R^n in which a representation $F(x) = B_1 \dots B_{n-1} G_n \circ \dots \circ G_1(x)$ is valid.
- 20. If ψ is a k-chain of class C'' in an open set $V \subset R^m$ and if ω is a (k-1) form of class C' in V, then prove that $\int d\omega = \int d\omega$.

S.No. 232

12PMA06

(For the candidates admitted from 2012-2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Second Semester

Mathematics

ADVANCED REAL ANALYSIS

Time: Three hours Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. State Cauchy condition for product.
- 2. Define Cesarosummability.
- 3. Define basis of X.
- 4. Define continuously differentiable.
- 5. Define rank of matrix A.
- 6. Define null space.
- 7. Define basic k-forms,

- 8. Define k- surface in E.
- 9. Define standard simplex.
- 10. When we say a set is exact.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) If $\lim_{p,q\to\infty} f(p,q) = a$. For each fixed p assume that the limit $\lim_{p,q\to\infty} f(p,q)$ exists then prove that the limit $\lim_{p,q\to\infty} \left(\lim_{q\to\infty} f(p,q)\right)$ also exists and has the value a.

Or

- (b) If $a_n \ge 0$ then prove that the product $\prod (1-a_n)$ converges if and only if the series $\sum a_n$ converges.
- 12. (a) If \bar{f} maps a convex open set $E \subset R^n$ into R^m , \bar{f} is differentiable in E, and there is a real number M such that $\|\bar{f}'(x)\| \leq M$ for every $x \in R$. Then prove that $|\bar{f}(b) \bar{f}(a)| \leq M |b a|$ for all $a \in E$, $b \in E$.

Or

(b) If X is a complete metric space, and if φ is a contraction of X into X then show that there exists one and only one $x \in X$ such that $\varphi(x) = x$.

13. (a) Prove that a linear operator A on \mathbb{R}^n is invertible if and only if $\det[A] \neq 0$. If [A] and [B] are n by n matrices then prove that $\det([B][A]) = \det[B] \det[A]$.

Or

- (b) If f is defined in an open set $E \subset R^2$ and that D_1f and D_2f exists at every point of E and $D_{21}f$ is continuous at some point $(a,b) \in E$. Then $D_{12}f$ exists at $(a,b) \in E$. Then show that $D_{12}f$ exists at (a,b) and $(D_{12}f)(a,b) = (D_{21}f)(a,b)$.
- 14. (a) Suppose $\omega = \sum_{1} b_{1}(x) dx_{1}$ is the standard representation of a k-form ω in an open set $E \subset \mathbb{R}^{n}$. If $\omega = 0$ in E, then show that $b_{1}(x) = 0$ for every increasing k-index I and for every $x \in E$.

Or

- (b) If ω is of class C' in E then show that $d^2\omega = 0$.
- 15. (a) State and prove Stoke's formula.

Or

(b) State and prove Green's theorem.

S.No. 232