SECTION C — $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

- 16. Let $M' \stackrel{u}{\longrightarrow} M \stackrel{v}{\longrightarrow} M'' \to 0$ be a sequence of Amodules and homorphisms then show that the sequence $M' \stackrel{u}{\longrightarrow} M \stackrel{v}{\longrightarrow} M'' \to 0$ is exact \Leftrightarrow for all A-modules N, the sequence $0 \to Hom\left(M'',N\right) \stackrel{\overline{v}}{\longrightarrow} Hom\left(M,N\right) \stackrel{\overline{u}}{\longrightarrow} Hom\left(M',N\right)$ is exact.
- 17. For any A-module M, then show that the following statements are equivalent:
 - (a) M is a flat A module
 - (b) M_{\wp} is flat A_{\wp} module for each prime ideal \wp .
 - (c) M_m is a flat A_m -module for each maximal idea m.
- 18. Let $A \subseteq B$ be integral domains, B integral over A. Then show that B is a field if and only if A is a field.
- 19. State and prove Hilbert's Basis theorem.
- 20. State and prove structure theorem for Artin rings.

S.No. 231

12PMA05

(For the candidates admitted from 2012-2013 onwards)
M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Second Semester

Mathematics

ADVANCED ALGEBRA

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define A-module homorphism.
- 2. Define quotient ring.
- 3. Define tensor product.
- 4. State local property.
- 5. Define primary ideal in ring.
- 6. State Going-up theorem.

- 7. Define Artinian.
- 8. Define Noetherian ring.
- 9. Define Artin ring.
- 10. Define fractional ideal.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) Show that every ring $A \neq 0$ has at least one maximal ideal.

Or

- (b) If a, b be ideals in a ring A such that r(a), r(b) are coprime then show that a, b are coprime.
- 12. (a) Let $x_1 \in M, y_1 \in N$ be such that $\sum x_1 \oplus y_1 = 0 \quad \text{in } M \otimes N. \text{ Then show that}$ there exist finitely generated submodules $M_0 \quad \text{of} \quad M \quad \text{and} \quad N_0 \text{ of} \quad N \quad \text{such that}$ $\sum x_1 \otimes y_1 = 0 \quad \text{in } M_0 \otimes N_0 \,.$

Or

- (b) Let *M* be an *A*-module. Then show that the following are equivalent:
 - (i) M = 0
 - (ii) $M_{\wp} = 0$ for all prime ideals \wp of A.
 - (iii) $M_m = 0$ for all maximal ideals of A.
- 13. (a) State and prove Going down theorem.

Or

- (b) Prove that B is a local ring and m = Ker(g) is its maximal ideal.
- 14. (a) Prove that in a Noetherian ring A every ideal is a finite intersection of irreducible ideals.

Or

- (b) Prove that in a Noetherian ring every irreducible ideal is primary.
- 15. (a) Prove that in an Artin ring has only a finite number of maximal ideals.

Or

(b) Let A be an integral domain. Then prove that A is a Dedekind domain \Leftrightarrow every non-zero fractional ideal of A is invertible.