16. State and prove Existence theorem.

- 17. Let b be continuous on an interval I then prove that every solution ψ of L(y) = b(x) on I can be written as $\psi = \psi_p + c_1\phi_1 + c_2\phi_2$ where ψ_p is a solution of L(y) = 0 and $c_1, c_2, ... c_n$ are constants. A particular solution ψ_p is given by $\psi_p(x) = \int_{x_0}^x \frac{[\phi_1(t)\phi_2(x) \phi_1(x)\phi_2(t)]b(t)}{W(\phi_1, \phi_2)(t)} dt$. Conversely every such ψ is a solution of L(y) = b(x).
- 18. If $\phi_1, \dots \phi_n$ are n solutions of L(y) = 0 on an interval I then show that they are linearly independent there if, and only if, $W(\phi_1, \dots, \phi_n)$ $(x) \neq 0$ for all x in I.
- 19. Derive the general solution of Bessel equation $x^2y''+xy'+(x^2-\alpha^2)y=0$.
- 20. Let M,N be two real-valued functions which have continuous first partial derivatives on some rectangle $R: |x-x_0| \le a$, $|y-y_0| \le b$. Then prove that the equation M(x,y) + N(x,y)y' = 0 is exact in R if, and only if, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R.

(For the candidates admitted from 2012-2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

First Semester

Mathematics

ORDINARY DIFFERENTIAL EQUATIONS

Time: Three hours Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Find all solutions of y''+y'-2y=0.
- 2. Show that function $\phi_1(x) = x^2$, $\phi_2(x) = 5x^2$ is linear dependent.
- 3. Write the characteristic polynomial of $L(y) = y''' 3r_1y'' + 3r_1^2y' r_1^3y.$
- 4. Write the characteristic polynomial of an Annihilator for the following function:
 - (a) e^{ax} and
 - (b) $x^k e^{ax}$.
- 5. Define singular point.

- 6. When we say the solution of the equation L(y) = 0 is linearly independent and linearly dependent.
- 7. Write the Bessel function of order $\alpha = 0$ of the first kind.
- 8. Show that $P_1(x) = x$.
- 9. Define Lipschitz condition.
- 10. Is this equation $(x^2 + xy) dx + xy dy = 0$ exact?

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) Prove that two solutions ϕ_1, ϕ_2 of L(y) = 0 are linearly independent on an interval I if, and only if, $W(\phi_1, \phi_2)$ $(x) \neq 0$ for all x in I.

Or

- (b) Find the solution of the initial value problem y''-2y'-3y=0, y(0)=0, y'(0)=1.
- 12. (a) Find all solution of $y''-y'-2y=e^{-x}$.

Or

(b) Find all real-valued solution $y^{(4)} + y' = 0$.

13. (a) One solution of $y'' - \frac{2}{x^2}y = 0$, for $(0 < x < \infty)$ is $\phi_1(x) = x^2$. Find the basis of the for the solution.

Or

- (b) Show that there exist n linearly independent solutions of L(y) = 0 on I.
- 14. (a) Prove that $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$ is the n^{th} Legendre polynomial.

Or

- (b) Show that $x^{1/2}J_{1/2}(x) = \frac{\sqrt{2}}{\Gamma(\frac{1}{2})}\sin x$.
- 15. (a) Consider the initial value problem y'=xy, y(0)=1 then compute the solution using method of successive approximation.

Or

(b) Give an example of a function which satisfies Lipschitz condition and another function which does not satisfy the Lipschitz condition.

S.No. 228