- 18. State and prove Brachistochorne problem.
- 19. State and prove Jacobi's theorem.
- 20. Show that the transformation is canonical $Q = \frac{1}{2} \left(q^2 + p^2 \right) P = -\tan \frac{q}{p}. \text{ If } H = \frac{1}{2} \left(q^2 + p^2 \right) \text{ then}$ find the new Hamilton.

S.No. 227

12PMA03

(For the candidates admitted from 2012–2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

First Semester

Mathematics

MECHANICS

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. State Konig's Theorem.
- 2. Define workless constraint.
- 3. State Kepler problem.
- 4. Define conservative system.
- 5. State principle's of least action.
- Write the Jacobian form of principle's of least action.

- 7. State Stackel's theorem.
- 8. Write the Hamilton Jacobi equation.
- 9. Define momentum transformation.
- 10. Define Lagrange's brackets.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) Derive the Lagrangian form of D'Alembert's principle.

Or

- (b) A particle of mass m is suspended by a mass less wire of length $r = a + b \cos \omega t (a > b > 0)$ to form a spherical pendulum. Find the equation of motion.
- 12. (a) State and the Jacobi integrals have the unit of energy.

Or

(b) Derive the standard form of Lagrange's equation for a holonomic equation.

13. (a) Derive the Hamilton's equation.

Or

- (b) Find the stationary value of the function f = z subject to the constraints $\varphi_1 = x^2 + y^2 + z^2 4 = 0$; $\varphi_2 = xy 1 = 0$
- 14. (a) Explain the Pfaffian differential form

Or

- (b) Derive the modified-Hamilton's Jacobi equation.
- 15. (a) Show that Rheonomic transformation $Q = \sqrt{2q} \ e^t \cos p, P = \sqrt{2q} \ e^{-t} \sin p \text{ is canonical.}$

Or

(b) State and prove Jacobi's identity property.

SECTION C —
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 16. Derive the rotational kinetic energy in the form of $T_{rot} = \frac{1}{2} \omega^T I \omega \ .$
- 17. Discuss Routhian function and prove that $\frac{d}{dt} \left(\frac{\partial R}{\partial q_i} \right) = \frac{\partial R}{\partial q_i} = 0.$