- 17. Suppose f and g are defined on [a, b] and are differentiable at a point $x \in [a, b]$. Then show that f+g, fg and f/g are differentiable at x, and
 - (a) (f+g)'(x) = f'(x) + g'(x);
 - (b) (fg)'(x) = f'(x)g(x) + f(x)g'(x);
 - (c) $\left(\frac{f}{g}\right)'(x) = \frac{g(x) f'(x) g'(x)f(x)}{g^2(x)}, g(x) \neq 0.$
- 18. If γ' continuous on [a, b], then show that γ is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$.
- 19. Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t \to x} f_n(t) = A_n(n=1, 2, 3,...)$. Then prove that $\{A_n\}$ converges, and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$.
- 20. State and prove Parseval's theorem.

S.No. 226

12PMA02

(For the candidates admitted from 2012-2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

First Semester

Mathematics

REAL ANALYSIS

Time: Three hours

Maximum: 75 marks

SECTION-A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define open cover.
- 2. Define uniform continuous.
- 3. Define Taylor's theorem.
- 4. Define local maximum.
- 5. Write equation of Riemann-Stieltjes integrals.
- 6. Define refinement.
- 7. Define pointwise bounded.

- 8. Define uniformly bounded.
- 9. Define analytic function.
- Define the gamma function.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

Show that compact subsets of metric spaces 11. are closed.

Or

- If f is a continuous mapping of a compact metric space X into a metric space Y then prove that f is uniformly continuous on X.
- 12. If f is defined on [a, b] and it has a local maximum at a point $x \in (a, b)$ and if f'(x)exists then show that f'(x) = 0.

Or

- State and prove Taylor's theorem.
- 13. Show that if $f \in \Re(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$

Or

- Prove that $\int_{a}^{b} f dx \le \int_{a}^{-b} f dx$.
- State and prove Stone-Weierstrass theorem. 14. (a)

Or

- If K is a compact metric space, if $f_n \in \ell(K)$ $n = 1, 2, 3, \ldots$, and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.
- 15. (a) Prove that $\beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$.

Or

If f is continuous (with period 2π) and if $\varepsilon > 0$, then show that there is a trigonometric polynomial P such that $|P(x)-f(x)|<\varepsilon$ for all real x.

SECTION C —
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

16. If f is a continuous mapping of a compact metric space X into a metric space Y then prove that f(X) is compact.