9. (a) State and prove Uniform continuity theorem.

Or

- (b) Prove that every compact subspace of Hausdorff space is closed.
- 10. (a) State and prove Urysohn metrization theorem.

Or

(b) State and prove Tietze extension theorem.

S.No. 219

08PMA08/ 08PMY10

(For the candidates admitted from 2008-2009 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

Third Semester

Mathematics & Maths (CA)

TOPOLOGY

(Common for M.Sc. Maths (CA))

Time: Three hours

Maximum: 75 marks

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

1. (a) Show that every finite point set in a Hausdorff space X is closed.

Or

(b) If X is a set and if \mathfrak{B} is a basis for a topology τ on X. Then prove that τ equals the collection of all unions of elements of \mathfrak{B} .

S.No. 219

2. (a). Define: (i) Product topology and (ii) Metric topology.

Or

- (b) State and prove Pasting Lemma.
- 3. (a) Prove that the unit ball B^n in \mathfrak{R}^n is path-connected.

Or

- (b) Show that a space X is locally connected if and only if for every open set U of X, each component of U is open in X.
- 4. (a) State and prove the Lebesgue number lemma.

Or

- (b) Prove that the image of a compact space under a continuous map is compact.
- 5. (a) Suppose that *X* has a countable basis. Then prove that every open covering of *X* contains a countable sub-collection covering *X*.

Or

(b) Show that every compact Hausdorff space is normal.

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

6. (a) Let A be a subset of the topological space X and A' be the set of all limit points of A then show that $\overline{A} = A \cup A'$.

Or

- (b) Let X be a topological space. Suppose that $\mathcal C$ is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of $\mathcal C$ such that $x \in C \subset U$. Then show that $\mathcal C$ is a basis for the topology of X.
- (a) Prove that the topologies on
 ηⁿ induced by
 the Euclidean metric d and the square
 metric ρ are the same as the product
 topology on
 ηⁿ.

Or

- (b) State and prove uniform limit theorem.
- 8. (a) Show that the union of a collection of connected subspace of *X* that have a common point is connected.

Or

b) State and prove intermediate value theorem.