Or

(b) With a neat circuit diagram, explain the operation of binary ladder D/A converter.

S.No. 343

17PEL01

(For the candidates admitted from 2017-2018 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

First Semester

Electronics and Communication

APPLIED ELECTRONICS

Time: Three hours

Maximum: 75 marks

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

1. (a) Explain the working of LED.

Or

- (b) In a common base connection, current amplification factor is 0.9. If the emitter current is 1 mA, determine the value of base current.
- 2. (a) What is class A power amplifier? Explain its operation.

Or

(b) With a neat diagram, explain the working of astable multivibrator.

4

3. (a) Explain Gray code with an example.

Or

- (b) Construct AND and OR gate using only NOR gates and explain its working.
- 4. (a) Draw the circuit diagram for full subtractor and explain its operation.

Or

- (b) Draw and explain the working of serial in-serial out shift register.
- 5. (a) For a 5-bit resistive divider, determine the output voltage for a digital input of 10011. Assume that 0 = 0V and 1 = +10V.

Or

(b) Explain the operation of counter type A/D converter with necessary circuit diagram.

PART B \leftarrow (5 × 10 = 50 marks)

Answer ALL questions.

6. (a) With a neat sketch, explain the working of centre tap full wave rectifier. Derive an expression for efficiency.

Or

(b) Explain with a neat schematic diagram, the construction and operation of enhancement type MOSFET.

7. (a) Explain with a neat circuit diagram, the working of push-pull amplifier.

Or

- (b) Draw a wien bridge oscillator circuit and explain its working.
- 8. (a) Convert decimal 170 into (i) binary (ii) octal (iii) hexadecimal and (iv) BCD.

Or

(b) Simplify the given equation using K-map and draw the logic circuit for the simplified equation.

$$f(A, B, C, D) = \Sigma(4, 5, 6, 9, 11, 12, 13, 15).$$

9. (a) Draw a 4×1 multiplexer and 1×4 demultiplexer and explain their working.

Or

(b) Explain the action of RS flip flop and JK flip flop.