	(b)	(i)	Write the mechanism of acid and hydrolysis reaction	d base (6)			
		(ii)	Explain with suitable example of mechanism.	f DCB (4)			
10.	(a)	(a) Write a notes on:					
		(i)	Styx number	(3)			
		(ii)	Wade's rule	. (3)			
		(iii)	Hydroborate ion	(4)			
			Or				
	(b) Write a brief account on:						
		(i)	Metallo carboranes	(5)			
		(ii)	Chemistry of low molecularety clusters.	metal (5)			

S.No. 351

17PCH02

(For the candidates admitted from 2017–2018 onwards)

M.Sc. DEGREE EXAMINATION, APRIL/MAY 2018.

First Semester

Chemistry

INORGANIC CHEMISTRY — I

Time: Three hours

Maximum: 75 marks

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

1. (a) Explain with suitable examples of hard and soft acids and bases and its classifications.

Or

- (b) What are silicates? Explain its structure.
- 2. (a) Derive Jorgensen relation.

Or

(b) State and explain M.O theory and energy level diagram.

3.	(a)	Write the spectroscopic term symbol for dn		(b)	Write a notes on:
		ions.			(i) Molecular sleves (4)
		\mathbf{Or}			(ii) Hetropoly acids of Mo and W. (6)
	(b)	Discuss the applications of metal complexes in solar energy conversion.	7.	(a)	Discuss the postulates of crystal field theory. Explain splitting of 'd' orbitals under various geomentrics and factors affecting splitting.
4.	(a)	Write a notes on labile and inert complexes.			
(b)		\mathbf{Or}		(b)	Or Write a notes on :
	(b)	Discuss the applications of substitution reaction in the synthesis of cobalt complexes.			(i) Dynamic and static John teller effect
5.	(a)	Give the preparation, properties and			(ii) Nephelauxetic effect. (5 + 5)
		structure of polyhedral boranes.	8.	(a)	(i) Draw and explain Orgel and Tanabe-Sugano diagram. (6)
	(b)	Or Write an explain the structure of Re ₂ Cl ₈			(ii) Write the spectral properties of
	(0)	metal cluster.			Lanthanides and Actinides. (4) Or
		PART B — $(5 \times 10 = 50 \text{ marks})$			Write a notes on photo substitution photo redox and isomerisation process.
		Answer ALL questions.			
6	(a)	(i) Write the structure and explain Craig and Peddock model. (6)	9.	(a)	(i) Explain with suitable example of electron and atom transfer reaction. (4)
		and Peddock model. (6) (ii) Explain with suitable example of poly			(ii) Give the substitution in square planar complexes. (4)
		sulphur compounds. (4)			(iii) Define trans influence. (2)
		$\bigcap_{\mathcal{H}}$		Me SA	

Or