10. (a) Describe the synthesis and properties of imidazole and thiazole. (5+5)

Or

(b) Describe the synthesis, properties and structural elucidation of flavones. (3 + 3 + 4)

S.No. 335

12PCH01/12POC01/ 12PAC01

(For the candidates admitted from 2012-2013 onwards)

M.Sc. DEGREE EXAMINATION, APRIL/MAY 2018.

First Semester

Chemistry

ORGANIC CHEMISTRY — I

(Common for Organic Chemistry and Analytical Chemistry)

Time: Three hours

Maximum: 75 marks

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

1. (a) Explain the formation and stability of carbenes.

Or

- (b) Discuss the mechanism of Hunsdicker reaction.
- 2. (a) Derive the Taft equation and give any two applications.

Or

(b) Discuss the isotopic labeling studies.

3. (a) Explain the stereo chemistry of biphenyls.

Or

- (b) Discuss the R S notation in D glucose.
- 4. (a) Compare S_N1 and S_N2 mechanism.

Or

- (b) Explain the nucleophilic substitution at allylic carbon.
- 5. (a) Describe the synthesis and properties of oxazole. (2+3)

Or

(b) Explain the synthesis and properties of anthocyanins. (2+3)

SECTION B — $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

- 6. (a) (i) Explain the reaction intermediates of free radicals. (5 + 5)
 - (ii) Discuss the mechanism of Sandmayer reaction.

S.No. 335

Or

(b) Explain the formation, stability and structure of nitrenes. (3+3+4)

7. (a) (i) Explain the non-kinetic method for study of reaction mechanism.

(ii) Describe the Hammett equation and write its significance. (5+5)

Or

- (b) (i) Discuss the significances of σ and π bond.
 - (ii) Explain the Hammonds postulate and microscopic reversibility. (5 + 5)
- 8. (a) (i) Discuss the stereo chemistry of spiranes.
 - (ii) Discuss the stereo specific and stereo selective reaction. (5+5)

Or

- (b) Explain the optical activity of allenes and crams rule with suitable example. (5+5)
- 9. (a) Describe the neighboring group participation by $C = C \pi$ bond, C C and $C H \sigma$ bonds.

Or

- (b) (i) Describe the nucleophilic substitution at vinyl carbon.
 - (ii) Explain the Williamson and Von-braun reactions.