					a_i
	10	18	11	7	20
	9	12	14	6	40
	8	9	12	10	35
j	16	18	31	30	

19. Solve

20. Construct a network diagram and find the total float for?

Activity: 1-2 1-3 2-3 2-4 3-4 4-5

Duration: 20 25 10 12 6 10

S.No. 1672

08USTA13

(For the candidates admitted from 2008-2009 onwards)

B.B.A. (CA) DEGREE EXAMINATION, APRIL/MAY 2018.

Second Semester

QUANTITATIVE TECHNIQUES — II

Time: Three hours Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. What is operation research?
- 2. State any four applications of O.R.
- 3. Define "basic feasible solution".
- 4. Write down the canonical form of a L.P.P.
- 5. Describe a transportation problem.
- 6. Express a transportation problem as a linear programming model.
- 7. How is a 3 × 3 game, can be solved when Dominance property fails?
- 8. Define strategy.
- 9. What is dummy activity in a network?
- 10. What is the latest start time?

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

- 11. (a) Describe briefly the research phase of O.R. Or
 - (b) Write short notes on the applications of O.R. in the finance and marketing areas of management.
- 12. (a) Solve the following LP problem, using graphical method:

 Minimize $Z = 2x_1 + 3x_2$

Subject to
$$x_1 + x_2 \ge 6$$

 $7x_1 + x_2 \ge 14$
 $x_1, x_2 \ge 0$.

- (b) Define slack variables and surplus variables in L.P.P.
- 13. (a) Describe the methods of obtaining an initial solution to a T.P by Vogel's approximation methods.

Or

(b) Assign the mechanics to the machine such that the total production cost is minimum.

total production c					
	1	2	3	4	
A	8	2	6	5	
В	10	9	2	8	
Ç	5	4	9	6	
D	3	6	2	8	

2

14. (a) Solve the following game $\begin{bmatrix} 3 & -2 \\ -2 & 5 \end{bmatrix}$.

Or

- (b) Define saddle point and write the rules for determining saddle point.
- 15. (a) Describe a network and define project duration.

Or

(b) The following data are the characteristics of a project.

Activity:

Immediate predecessors:
Duration (in days):

A	В	C	D	E	F
	A	A	В, С		E
2	3	4	6	2	8

Draw the network diagram for the above project and find the project duration.

SECTION C —
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 16. Explain the limitations of O.R.
- 17. Solve, using simplex method:

Maximize
$$Z = 21x_1 + 15x_2$$

Subject to
$$x_1 + 2x_2 \le 6$$

 $4x_1 + 3x_2 \le 12$

$$x_1, x_2 \ge 0.$$